Números complexos

Assuntos matemáticos relacionados ao ensino médio.

Moderadores: Helio Carvalho, Paulo Testoni, Elcioschin

Números complexos

Mensagempor Camila Ligneul » Sábado Out 21, 2017 4:41 pm

Oi, alguém pode me ajudar com essa questão?

Se i é raiz de P(x)= px³+(q-3)x²-2px-1, encontre p e q, sabendo que P(1)=-i ?
Camila Ligneul
 
Mensagens: 1
Registrado: Sábado Out 21, 2017 4:19 pm

Re: polinomios

Mensagempor Paulo Testoni » Terça Out 24, 2017 12:21 pm

Hola.

Se i é raiz de P(x), então P(i) = 0. Logo,

P(i) = 0

pi³ + (q - 3)i² - 2pi - 1 = 0

-pi + (q - 3)(-1) - 2pi - 1 = 0

-3pi - q + 3 - 1 = 0

2 - q - 3pi = 0

q = 2 - 3pi (I)

Como P(1) = -i, temos:

P(1) = -i

p + q - 3 - 2p - 1 = -i

-p + q - 4 + i = 0 (II)

Substituindo (I) em (II) obtemos:

-p + 2 - 3pi - 4 + i = 0

-2 - p - 3pi + i = 0

p(-1 - 3i) = 2 - i

p = (2 - i)/(-1 - 3i)

Multiplicando o numerador e o denominador de (2 - i)/(-1 - 3i) pelo conjugado de (-1 - 3i) obtemos:

p = (1 + 7i)/10 (1ª RESPOSTA)

Substituindo "p" em (I) obtemos:

q = 2 - 3pi

q = 2 - 3i ∙ (1 + 7i)/10

q = (41 - 3i)/10 (2ª RESPOSTA)
Às vezes é melhor ficar quieto e deixar que pensem que vc é idiota, do que abrir a boca e não deixar nenhuma dúvida.
Paulo Testoni
 
Mensagens: 1125
Registrado: Terça Set 22, 2009 8:20 am


Voltar para Ensino Médio

Quem está ligado

Usuários navegando neste fórum: Google [Bot], Google Adsense [Bot] e 21 visitantes